• Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    dual crystal spectrometer Journal of Instrumentation, Volume 11
    E.J. Gamboa, B. Bachmann, D. Kraus, M.J. MacDonald, M. Bucher, S. Carron, R.N. Coffee, R.P. Drake, J. Emig, K.R. Ferguson, L.B. Fletcher, S.H. Glenzer, T. Gorkhover, S.P. Hau-Riege, J. Krzywinski, A.L. Levitan, K.-H. Meiwes-Broer, T. Osipov, T. Pardini, C. Peltz, S. Skruszewicz, C. Bostedt, T. Fennel and T. Döppner
    Published 22 August 2016

  • Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Thomson Scattering MacDonaldRev. Sci. Instrum. 87, 11E709
    M. J. MacDonald, T. Gorkhover, B. Bachmann, M. Bucher, S. Carron, R. N. Coffee, R. P. Drake, K. R. Ferguson, L. B. Fletcher, E. J. Gamboa, S. H. Glenzer, S. Göde, S. P. Hau-Riege, D. Kraus, J. Krzywinski, A. L. Levitan, K.-H. Meiwes-Broer, C. P. O’Grady, T. Osipov, T. Pardini, C. Peltz, S. Skruszewicz, M. Swiggers, C. Bostedt, T. Fennel, and T. Döppner
    Published 8 August 2016
  • Measuring transient states of matter using incoherent scattering

    Thomson Scattering MacDonald

    Measuring transient states of matter on the femto- to attosecond timescale is a current scientific challenge. Particularly for nanometer sized objects, the size of biomolecules for example proteins, it is a challenge to measure signal above the noise level due to low cross-sections. The amount of photons LCLS produces can overcome signal-to-noise issues and opens the door to perform measurements in entirely new regimes. In the featured and recently published study, we make use of LCLS in such a new way and measure an incoherent signal much above the noise level. The basis of this experiments is to spectrally resolve the scattering from free electrons or Thomson scattering. The developed method allows another way to gain insight into transient states, for example, the nanoplasma transformation or chemical reactions that last on the atto- to picosecond timescale. Particularly, parameters such as (electron) temperature, density and ionization levels can be measured using the LAMP endstation at LCLS. To make the proof-of-principle study, a pump-probe scheme was employed that first used an IR laser to induce a transient state (nanoplasma) in a nano-sample (argon clusters) and then secondly, after a time-delay, measures this state using the X-rays LCLS.

    Read more

  • Probing X-ray induced dynamics of molecules

    ncomms11652 f1I'm pleased to announce that my collaborator Antonio Picon has published his most recent results in Nature Communications. He uses an X-ray pump – X-ray probe concept to induce X-ray dynamics and subsequently probe them. It is one of the first experiments of its kind and uses the free electron laser at Stanford University to investigate ultrafast dynamics in molecules that happen on a femtosecond timescale. Experiments of this kind could be used in the future to better understand chemical reactions and to better understand how light interacts with matter. Particularly on ultrafast time scales.

    Read more

  • Transient lattice contraction in the solid-to-plasma transition

    ken science 2016Sci. Adv. 2016; 2 : e1500837
    Ken R. Ferguson, Maximilian Bucher, Tais Gorkhover, Sébastien Boutet, Hironobu Fukuzawa, Jason E. Koglin, Yoshiaki Kumagai, Alberto Lutman, Agostino Marinelli, Marc Messerschmidt, Kiyonobu Nagaya, Jim Turner, Kiyoshi Ueda, Garth J. Williams, Philip H. Bucksbaum and Christoph Bostedt
    Published 29 January 2016

  • Ultrafast x-ray-induced nuclear dynamics in diatomic molecules

    PRA Picon 2016 07This is a similar study to our work published in Nature Communications earlier this year. Here, we investigate diatomic molecules and use a two-color X-ray pump–X-ray probe approach. The pump pulse arrives first and induces dynamics, whereas the probe pulse arrives at a certain time delay and allows us to look at the induced dynamics. Theoretic predictions align well with the observed dynamics, such that we establish a microscopic understanding of the processes. The work has been mainly driven by A. Picon and C.S. Lehmann, whom I particularly congratulate to this paper. Please find more at.

    Read more

Social Media

Please find me also on social media pages.


Contact Me

+49(0)611 536-200

Kurhausplatz 1
D-65189 Wiesbaden

This email address is being protected from spambots. You need JavaScript enabled to view it.